Self-healing mechanism of metallopolymers investigated by QM/MM simulations and Raman spectroscopy.
نویسندگان
چکیده
The thermally induced self-healing mechanisms in metallopolymers based on bisterpyridine complexes of iron(II) sulfate and cadmium(II) bromide, respectively, were studied by means of combined quantum mechanical/molecular mechanical (QM/MM) simulations and Raman spectroscopy. Two possible healing schemes, one based on a decomplexation of the cross-linking complexes and a second one relying on the dissociation of ionic clusters, have been addressed. Temperature-dependent Raman spectroscopy displayed bathochromic shifts of the Raman intensity pattern upon heating. QM/MM simulations on the polymer models assign these alterations to a partial decomplexation of the metal terpyridine complexes, i.e. signals originating from free terpyridine ligands increase upon heating. Thus, a healing mechanisms based on partial decomplexation of the cross-linking complexes is suggested. The possibility that the dissociation of ionic clusters, which are assumed to be present in this class of self-healing polymers, is also responsible for the self-healing process was investigated as well. However, such calculations on model clusters revealed relatively strong binding of the clusters, which renders reversible cluster breaking and reformation upon temperature cycling in the range up to 100 °C unlikely.
منابع مشابه
Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملTracking flavin conformations in protein crystal structures with Raman spectroscopy and QM/MM calculations.
متن کامل
Ambient-Potential Composite Ewald Method for ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulation.
A new approach for performing Particle Mesh Ewald in ab initio quantum mechanical/molecular mechanical (QM/MM) simulations with extended atomic orbital basis sets is presented. The new approach, the Ambient-Potential Composite Ewald (CEw) method, does not perform the QM/MM interaction with Mulliken charges nor electrostatically fit charges. Instead the nuclei and electron density interact direc...
متن کاملImportance of van der Waals Interactions in QM/MM Simulations.
The importance of accurately treating van der Waals interactions between the quantum mechanical (QM) and molecular mechanical (MM) atoms in hybrid QM/MM simulations has been investigated systematically. First, a set of van der Waals (vdW) parameters was optimized for an approximate density functional method, the self-consistent charge-tight binding density functional (SCC-DFTB) approach, based ...
متن کاملEfficient frequency calculations in QM/MM using the Mobile Block Hessian method
Normal mode analysis (NMA) is a well-known technique which estimates the intrinsic frequencies of chemical systems by assuming a harmonic shape for the potential energy surface. Despite its simplicity, it is still a popular approach to predict vibrational IR and Raman spectra, to identify chemical groups [1], or to study the large motions involved in conformational changes of biomolecules [2]. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 24 شماره
صفحات -
تاریخ انتشار 2014